Minimum fractional dominating functions and maximum fractional packing functions
نویسندگان
چکیده
The fractional analogues of domination and packing in a graph form an interesting pair of dual linear programs in that the feasible vectors for both LPs have interpretations as functions from the vertices of the graph to the unit interval; efficient (fractional) domination is accomplished when a function simultaneously solves both LPs. We investigate some structural properties of the functions thus defined and classify some families of graphs according to how and whether the sets of functions intersect. The tools that we develop have proven to be useful in approaching problems in fractional domination and in the broader theory of domination.
منابع مشابه
Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملClosed neighborhood order dominating functions
The linear programmimg formulations of graph domination and graph packing are duals. Likewise, fractional efficient domination for a graph G has as its dual the parameter discussed in this paper, namely the minimum weight of a real-valued function f : V(G) -+ [0, (0) such that the sum of the weights in each closed neighborhood is at least its cardinality. The fractional and integer "closed neig...
متن کاملHybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method
In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.
متن کاملThe operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009